
The velocity field obtained can be used for analysis of an non-steady-state boundary 
layer at the porous surface of a moving body. 
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COMPLEX HEAT EXCHANGE OF A DISPERSED TURBULENT FLOW IN A PIPE 

I. F. Guletskaya and F. N. Lisin UDC 536.2--3 

i. We will write the energy equation for a turbulent flow of a gas and suspended matter 
in a pipe in the form [i, 2] 

(1.l) 

where B is the volume concentration of the solid phase, ~ and ~t are the molecular and tur- 
bulent thermal conductivity, respectively, <v~T~> is the turbulent energy transport by parti- 
cles, and q r is the resultant radiation flux. 

It is necessary for a description of the heat exchange of a two-phase flow to supplement 
Eq. (i.i) with an energy equation for the particles. We will discuss the turbulent flow of 
a gas and suspended matter with a low concentration of heavy particles, i.e., B <<i. The 
particles are distributed uniformly over the cross section of the pipe. Then Eq. (i.i), 
upon neglect of terms containing B, is written in dimensionless form as 

az  - -  ~e 7- ~ Pr P~t  ~- v" divq~,  ( 1 . 2 )  
i 

where @ = T/To, x = x/D, ~ = r/R, Bo = c0~/ooT~, Re = ~D/v; u is the average velocity, Pr t 
is the turbulent Prandtl number, To is the ambient temperature at the pipe entrance (To > TI), 
and vt is the turbulent viscosity. The boundary conditions for (1.2) are of the form 

0(7.; o) - -  > o; 0 = o, .  

form 
2. The velocity distribution in viscous and transition layers is given in [3] in the 

z~ 2.3 L , * ~  , 5 .8 ,  3 0 < ~  ~ ' * ' J f  v* - -  z o Ig  T ~ "-~ "~  700; 

u/v* = v'y/v, and v*y/~ < 30 (y is the distance from the wall). 

The value of the tangential stress T in a dispersed flow is related to the analogous 
quantity in a pure gas flow To by the relationship 

T/~ = i ~ ' I~ ,  (2.1) 

where ~ is the discharge concentration and ~ is a coefficient reflecting the strength of the 
effect of U on the degree of deformation of the velocity distribution in a two-phase flow. 
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Using von Karman's turbulent drag law and Eq. (2.1), one can show approximately that 

~4 2 

7 ~ _  .~oz k ' (2.2) 

where the subscript "0" refers to quantities of a pure flow and k is an empirical coefficient. 
It follows from (2.2) that the constant in the drag law for a two-phase flow is related to 
von Karman's constant by the relationship 

- -  k " 

We use the von Karman distribution [4] for the description of the velocity in the core 
of the flow of the carrier medium which with (2.1) and (2.2) taken into account has the form 

[( v UO--v" --~--u ovik-4-~l, 'x In i - -  V I - - 7 ) - ~  - , --~-y>700, (2.3) 

for a pipe, where Uo is the velocity on the pipe axis. With k = i and 9 = 0 Eq. (2.3) 
changes into the formula for the velocity distribution for a dust-free gas [4]. The velocity 
distributions in the core of the flow with an average velocity of 25.1 m/sec in the pipe are 
given in Fig. 1 as calculated from Eqo (203). Curve 1 corresponds to a particle-free gas 
(~ = 0), and curve 2 corresponds to a two-phase flow with a particle concentration ~ = 2.86 
kg/kg. The value k = 1 was adopted in the calculations. The value of the coefficient n in 
Eq. (2.1) was taken from the data of [3]. The experimental results of [3] are denoted by 
filled circles. The value of the turbulent viscosity in (1.2) should take account of the 
effect of particles on the turbulent structure of the carrier medium. We will adopt the model 
of [5, 6] to describe the turbulent transport~ 

According to this model, one can represent the value of the turbulent viscosity within 
the confines of viscous and transition layers in the form 

where 

tin(Y) t/~o 
1 f Ao(y)~--• ~ ; ~,(~)= R(t) d R(t) dt; 

0 

(2.4) 

t is the time,~o is the von Karman constant, R(t) is the Lagrangian correlation coefficient 
of the transverse pulsation component of the velocity, and tm(y ) is the limiting scale of 
the turbulent eddies such that eddies with scales t > tm(y) cannot approach the wall to 
within a distance less than y. As follows from [7, 8] the effect of the presence of parti- 
cles is significant in the region of small wave numbers. One can assume for the sake of 
simplification that the effect of particles reduces to a cutoff of the short-wavelength part 
of the spectrum [6]. 

In the case of the Lagrangian turbulence description a cutoff of the spectrum in the 
region of large wave numbers is equivalent to the replacement of R(t) for a one-phase medium 
by the function [6] 

R' ( t )  = R ( t ) Y ( t - - t ' ) ,  (2.5) 
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It, x>0 
where Y(x) = [0, x<0 , t' = c'yo/u, and yo = i/ko is some characteristic scale proportional 

to the particle diameter d which increases as ~ increases in the region of small ~. 

Substituting (2.5) into (2.4) and carrying out the necessary operations, we obtain for 
a pipe 

~-2-~ = •  l - - e x p - - ~ l  J I-~r ' 

and a~ = ~v/Rv*, where ~ = 30.4 [6]. We will determine the value of yo from the notions 
that it should be proportional to the particle diameter d and increase as ~ increases: 

go = a~d or r o = i - a g d / R ,  

where a is a proportionality coefficient. 

3. The authors of [9] and [i0] obtained the value of diver in the energy equations 
from the solution of the transfer equation of radiation energy in the P1-approximation of 
the method of spherical harmonics. It was assumed that the radiation is gray and irradiates 
only the particles. One can calculate the absorption and scattering coefficients and the 
average scattering cosine for a layer of particles on the basis of the theory of G. Mie if 
the complex refractive index of the particle material, the particle size distribution 

function, and the particle concentration are known. The expression for div q r is obtained 
in the form 

div q~ = --  4 (i --  ?) zo A J o  (~r] --  O' ~) --  I o (o?) ~ @4~')~ 'Ko(~7 ' )  d ~ '  + Ko (aT) y O ~ (r') a r ' f  o (~P) d a 7  , 
0 0 

where To is the optical thickness, o = Tor -- y)(l --y~); y is the ratio of the average 
scattering coefficient to the absorption coefficient, Io is the modified Bessel function, AI 
is a constant determinable from the boundary conditions for the transfer equation, and ~ is 
the average cosine of the scattering (~ = 0 for a spherical indicatrix). The value of the 
optical thickness To is directly proportional to the particle concentration, namely, To = 

0 . 2 5 ~ R < k > ,  where  <k> = (~; T k - ~ d l d  B (~; T) d~ i s  t h e  a v e r a g e  a b s o r p t i o n  c o e f f i c i e n t ,  
0 0 

k i s  t h e  a b s o r p t i o n  c o e f f i c i e n t  o f  a p a r t i c l e ,  d s / d l  i s  t h e  d i s t r i b u t i o n  f u n c t i o n  o f  t h e  
s p e c i f i c  s u r f a c e  o f  t h e  p a r t i c l e s  w i t h  r e s p e c t  t o  t h e i r  s i z e s  l ,  B(X, T) i s  t h e  P l a n c k  
f u n c t i o n ,  and X i s  t h e  w a v e l e n g t h .  

We will not discuss particles of any particular material in this paper, and we adopt To = 
2~, thereby assuming that (i/4)pR<k> = 2. 

4. Equation (1.2) was solved numerically with the use of an implicit difference scheme 
solved by elimination. The algorithm of the problem was run on a BESM-6 computer. It is 
possible to calculate from the computed temperature field in the pipe the values of the 
Nusselt number of a convective heat flux 

0 0  - 
N u c =  2 -g7 / (0  --  0~) ( r =  1) 

and the criterion Nu E of the total heat flux 

Nuz = N u c +  Nur = 

00 Pe _ 
2 ---=- + ~--~- qr 

8r 
O - -  01 

(r  = t ) ,  

whe re 

I' I# -- - gg -- 
= Or d r dr. 

0 1 0 
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The problem of purely convective heat exchange of a dust--air flow was solved first with 
various Re~2000 and 0 < ~ < 6. The drag law [i0] ~ = ~o(i + 0.145 p), where ~o is the 
Blasius law, was used in the calculations of the dynamic velocity v*. The computational re- 
sults were worked up in the form of a dependence of Nu(~ = 70)/NUo(~ = 70) on the parameter 
combination B = (65/Re~ The quantity Nuo was calculated from the formula 

Nu o = 0.022 Re~176 

Calculations by the numerical method are shown as a dashed curve in Fig. 2. The solid 
curve is plotted from the relationship 

N~ = 0 . 6 4 l  65 D \0.25 

which is a generalization of the experimental data of different authors and is derived in 
[12]. The computational results are in good agreement with the experimental values for small 
values of p. This agreement is obtained with Pr t = i, a = i, and k = i. The problem of 

complex heat exchange was solved with Re = 30,000, Bo = 30, Pr = 0.7, Pr t = i, a = i, u = 
0.8, p = 0.8, and s = i. 

The dependences ofthe value of the Nusselt criterion on channel length for local con- 
vective heat flow with complex heat exchange are given in Fig. 3 for various particle concen- 
trations (optical thickness) (Re = 3"i0 s, Bo = 30, Pr = 0.7, Prt = i, u = 0.8, ~ = 0.8, s = 
I, and d/D = 0.0025; p = 3 for curves 1 and 5, p = 2 for curve 2, p = 1 for curves 3 and 6, 
and p = 0.5 for curve4). The results for nonemitting particles are denoted by the dashed 
curves. In this case of complex heat exchange the values of the convective heat transfer 
differ from the heat transfer for purely convective heat exchange, other conditions being 
equal. At high wall temperatures the difference reaches 20%. 

The temperature dependence of the local dimensionless heat flux transmitted by radiation 
and convection with p = 0.5, q~ = (qc + qr )/~cpT~ is given in Fig. 4 (dashed curves) (the 
parameters are the same as in Fig. 3; L = 3.55 for curve i, and L = 6.05 for curve 2) for 
various distances from the entrance. The analogous dependence for a local dimensionless heat 

flow by radiation (solid curves) qr = qr/UCp To is also given there. 

Pe 
The dependences of the local Nusselt number for a radiative flux Nu r =~-qr/(@-- @i) on 

the particle concentration are given in Fig. 5 (the parameters are the same as in Figs. 3 and 
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4; @i = 0.8, and L = 24) for various values of y. The extremal behavior of the curves as 
increases is explained by the fact that an increase in the particle concentration (opti- 

cal thickness) first leads to an increase in the heat transfer by radiation, since the cold 
layers adjacent to the channel walls of the moving medium absorb the radiation of the core 
of the flow weakly due to the optical thickness. Upon a further increase in the particle 
concentration the boundary layers shield the radiation of the flow core more and more strong- 
ly, and the heat exchange, having reached a maximum, decreases. 
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EFFECT OF INHOMOGENEITY OF THE DISPERSE PHASE ON COALESCENCE 

AND MASS-TRANSFER PROCESSES IN LIQUID EMULSIONS 

L. P. Pergushev and A. K. Rozentsvaig UDC 532.529:66.02i~ 

The coalescence of drops of a disperse phase serves as the basis for the separation of 
immiscible liquids in the absence of extraction and mass-transfer processes, in the chemical, 
pharmaceutical, food, and many other branches of industry [i]. In recent years great progress 
has been made in the use of highly effective demulsifiers to break up petroleum emulsions in 
industrial plants and oil refineries [2, 3]. However, interaction between drops, which has 
an exceptionally great effect on mass transfer and chemical reactions in the disperse phase, 
has been insufficiently studied [4]. 

The coalescence of drops under the action of agitation~ in particular with the motion of 
an emulsion under turbulent conditions, is bound up with an increase in the rate of a broad 
range of technological processes and with an increase in the quality of mass-transfer and 
coagulation processes in pipelines and apparatus. An analysis of the interaction between 
finely dispersed drops with the break-up of emulsions by chemical methods using demulsifiers 
also makes it possible to solve the problem of two-phase flows in pipelines; these methods 
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